
all B. 
By duality,  the results apply to m-input singleoutput systems as 
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The results  developed in this note also apply to multiinput multioutput 
systems using unity-rank output feedback matrices. 

Example: For the system 
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find the output feedback  vector required to place two poles at - 1, -2 
and detexmine  the  residual characteristic polynomial. 

In this example, we have 

W(s)=Cadj(sl-A)b=[ i]; F(s)=lsl-Al=s3+7s2 

P(s)=(s+1)(s+2)=s2+3s+2; Q(s)=s+a,. 

HenCe, 

Choosing B = 0 arbitrarily, we obtain 

Hence, the required  feedback  vector is k=[8,14] and the residual char- 
acteristic polynomial is s+4; Le., the unassigned pole has moved to 
s = -4. It can readily be shown that the above solution  is independent of 
B. 
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The purpose of the present communication is chiefly  pedagogical.  We 
consider the problem of pole shifting by state feedback in the single-in- 
put discrete-time  system 

where x E X: = K" and u E U: = K', K being an arbitrary field, (The 
matrim A and b are n x n and n x 1  K-matrices,  respectively.) The 
characteristic polynomial of A ,  denoted $,&I), is  given  by #A(A)=A"+ 
a l ~ " - ' + .  . . +%_'X+%. 

We concern ourselves  with the following  well-known  theorem. 
Theorem I :  Assume that ( A ,  b) b reachable (Le., that Q : = 

[b,Ab,-.-  ,An-%] is nonsingular). Then for aty polynomial +@)=A"+ 
BIXn-'+ -.  * +&,X+fl, of degree n with  coefficients  in K, there exists a 
1 X n K-matrix f such that +(A) is the characteristic polynomial of A + bj. 
Moremr, the matrix f for which the above holh is unique. 

Theorem  1 was first  proved  by Rissanen [l] in 1960 using what is now 
commonly called the "control canonical form." His proof of Theorem 1 
relies on the fact that, as a consequence of reachabiility,  the set of vectors 
{~1,~~~,un),whereun=bandui=Aui+l+~_ib,i=l,~~~,n-l,formsa 
basis for K". In this basis the system  (1) is in control canonical form in 
which the pole shifting property becomes W y  apparent. Theorem 1 
was later discussed  by Bass [2] who  gave  a  somewhat  different computa- 
tional method for f (see also Bass and Gura [3D. More  recently,  Acker- 
mann [4]  showed that f can be expressed by the formula f-  
- en Q -'+(A) where en = (0, 0, * ,0, I), which has the advantage that, in 
contrast to the previously  known  methods, it does not require explicit 
knowledge of the characteristic polynomial of the open-loop matrix A. 

While  the above approaches to the proof of Theorem 1 (and to the 
computation off) differ in detail, they share the direct reliance on the 
(technical) fact that Q is nonsingular. Thus, the dependence of the 
(closed-loop)  pole  shifting  property on the (open-loop)  reachability prop 
erty is commonly understood only circumstantially through the nonsin- 
gularity of Q, but not through any direct control theoretic  insight. 

In this communication we will show that Theorem 1 can be derived 
directly as a  consequence of reachability and its "open-loop" con- 
sequences. In particular, it will be shown that the  theorem  is a natural 
consequence of the  uniqueness of solution to the following  discrete-time 
time-optimal-control problem which we denote by (P): 
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(P) Assume that ( A , b )  is reachable, and find a control sequence {uk)  
that transfers  the  initial state XI = b in the  system (1) to the  origin  in  a 
minimal number of steps. 
As an immediate  consequence of the reachability condition of (A,b)  

and of the Cayley-Hamilton  theorem we obtain the  following. 
Proposition 1: The time-optimal-control problem (P) has a unique solu- 

tion with the  following properties. 
a) The minimal time is I = n (that  is, x,,+ I is the first state that can be 

zeroed). 
b) The unique control  sequence that solws (P) is giuen by Y+= q, 

i = l  ... 
c) The optimal state sequence { .xk):- obtained & the  controls of b) 
, J. 

as 

( 
x l = b  
xk+,=Axk+bak;  k=l;.. ,n-l (2) 

forms a bask for K" and is the  unique state sequence  through  which XI = b 
can be steered to the  origin  in n steps. 

We consider  now the problem (P) for a  "feedback  associate" of 
system (I), that is, for the  system 

xk+l=Axk+buk;  (k=1 ,2 ; - . )  (3) 

where Â  = A + bf with f being  a  1 X n K-mahk  The reachability of (1) 
obviously  implies the reachability of (3) for every f .  

Suppose  first that f is  fixed and apply Proposition 1 to the  system (3). 
Part b) of the proposition  implies that the  optimal control sequence 
{ u ~ ) ? - ~  is  given  by ui= pi where-the 18, are the  coefficients of the 
characteristic polynomial $20) of A : 

+2(X)=h"+/31X"--l+ ... +&-,h+& 

The  trajectories of the systems  (1) and (3) can be equated by relating 
their controls through 

uk=uk+fxk; (k=1,2,3,**.) .  (4) 

Thus, the (unique) minhizhg state sequence { %k) through  which x1 = b 
can be driven  to  the  origin in n steps is the same  whether we employ the 
system (1) or (3). In other words,  the state sequence in (2) is a  "feedback 
invariant," that is, it is the  same for every  feedback associate of (1). 
From this latter fact and from (4), it follows that the  coefficients pi are 
related to the q throughf by 

p , = q + f x i ;   ( i = 1 , 2 , . - . , n ) .  ( 5 )  

We turn now  to the converse  problem. 
Proof  of  Theorem I :  Let + @ ) = X n + B 1 X n - ' + . . -  +&,-IX+rB, be 

any polynomial of degree n with coefficients in K. We  wish to findf suck 
that A = A  + bf has +@) as its characteristic polynomial. If such an A 
ex@, then  the state sequence {xk ) ;_  of (2) is optimal also for the  pair 
(A&). Moreover,  Proposition 1 [applied to the system (3)] implies that 
the sequence ui = Fi, i = 1,2,. - . ,n must  be the unique miniminng control 
sequence of problem (P) so that, as before, (5 )  must hold. That A" indeed 
exists as required  follows  then from the fact that the optimal state 
sequence { x i }  of (2) forms  a  basis for K" (part c) of Proposition I )  so 
that (5) has a  unique  solution f for every  set { Bi).  0 

From the  above proof  of the pole  shifting  theorem, it is apparent that 
the theorem can be regarded as a  consequence of the  uniqueness of the 
solution to the problem (P) and the  "feedback  invariance" of the state 
sequence (2). Also, a crucial fact on which the pole  shifting  theorem 
hinges is that the  sequence (2) forms  a  basis for K". A similar  point of 
view  was also taken in a  recent note by Hautus [5] where the so-called 
"Heymann Lemma," which  extends the pole  shifting  theorem to multi- 
input reachable systems, is reproved. 

The preceding  discussion  applies also when the reachability of ( A ,  6) is 
not satisfied. In that case,  let +(A,b)@) be the minimal  polynomial of b 
(relative to A )  (see, e.&,  [6,  p. 17Q. Then is a factor of the 
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characteristic polynomial #"(A) of A and we can write 
.$&A) for some  polynomial @). It is then easily verified that @) is 
invariant under  feedback,  whereas +(A,&)@) can be arbitrarily changed 
by  selection off. 
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On the  Eigenvalue-Eigenvector  Method  for  Solution 
of  the  Stationary  Discrete Matrix Riccati Equation 

MICHAEL L. MICHELSEN 

Abstmcf--The plnpose of this correspondence is to point out that 
certain numerical problems encountered in the solution of the stationary 
dkete  matrix Rid equation by the eigenvalne-eigenvector method of 
Vaughan [l] can be avoided by a simple reformulalioa 

The  positive  definite  solution matrix P of the stationary discrete 
matrix Riccati equation 

P = @ T I P - l + R ] - l @ + Q  (1) 

may  be, as shown by  Vaughan, found from the  eigenvectors of the 
matrix 

The eigenvalues of K~ multiply  pairwise to 1, and K= may be factorized 
into 

Kc=[ ;;; ;:I[; ."-,I[ ;;; (3) 

where A is diagonal  with > 1. 

eigenvalues of magnitude > 1: 
P is subsequently found from the set of eigenvectors  corresponding to 

P =  w,, wfi'. (4) 

If the system matrix 9 has  eigenvalues  close  to 0, K~ will be severely 
ill-conditioned, and numerical accuracy is in particular lost in the 
evaluation of the  term 9'+ Q@-'R as small elements of @' are added 
to large  elements of Q@-IR. 

This difficulty is avoided as follows. 
The eigenvectors of the matrix 

K:=(Kc+I) - ' (Kc-I )  (5) 

are identical to those of K ~ ,  and the eigenvalues of K,* occur pairwise  with 
opposite signs. Those  with  positive real park correspond to eigenvalues 
of K~ with  magnitudes  larger than 1. 
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